4 resultados para Dizygotic

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1990 and 1998, we conducted a longitudinal study of 286 female twins aged 8 to 25 years at baseline (60 monozygotic (MZ) pairs, 44 dizygotic (DZ) pairs and 78 unpaired twins), measured on average 2.4 times (range 2–6) with an average of 1.8 years between measurements (range 0.7–6.7 years). Areal bone mineral density (ABMD) at the lumbar spine, total hip and femoral neck, total body bone mineral content (BMC), total body soft tissue composition (lean mass and fat mass) were measured by dual-energy X-ray absorptiometry, and height and menarchial status were also recorded. Median annual changes in height were negligible at 4 years post-menarche. During the “linear growth” period up to 4 years post-menarche, ABMD at the lumbar spine, total hip and femoral neck increased with annual change in lean mass by 1.7 (S.E. 0.1), 1.4 (0.1) and 1.0 (0.1) percent per kilogram per year, respectively (all p<0.001), independently of changes in fat mass or height. During the “post-linear growth” period, ABMD at the total hip and femoral neck increased with annual change in fat mass by 0.3 (0.1) and 0.5 (0.1) percent per kilogram per year (all p<0.01), independent of change in lean mass. Annual changes in total body BMC were associated with annual changes in lean mass (1.9 (0.2) percent per kilogram), in fat mass (1.3 (0.2) percent per kilogram) and in height (0.7) (0.2) percent per centimeter) during linear growth, and in fat mass (1.0 (0.1)) and lean mass (0.6 (0.1)) percent per kilogram post-linear growth (all p<0.001). We conclude that changes in bone mineral measures are strongly associated with changes in lean mass during linear growth, while post-linear growth, changes in fat mass are the predominant, although weaker, predictor. These findings suggest that the strong cross-sectional association between bone mineral measures and lean mass is established during growth and development, and that fat mass emerges as a more powerful determinant of bone change in healthy adult females.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The age and developmental stage at which calcium supplementation produces the greatest bone effects remain controversial. We tested the hypothesis that calcium supplementation may improve bone accrual in premenarcheal females. Fifty-one pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic; mean ± SD age, 10.3 ± 1.5 yr) participated in a randomized, single-blind, placebo-controlled trial with one twin of each pair receiving a 1200-mg calcium carbonate (Caltrate) supplement. Areal bone mineral density (aBMD) was measured at baseline and 6, 12, 18 and 24 months. There were no within-pair differences in height, weight, or calcium intake at baseline. Calcium supplementation was associated (P < 0.05) with increased aBMD compared with placebo, adjusted for age, height, and weight at the following time points from baseline: total hip, 6 months (1.9%), 12 months (1.6%), and 18 months (2.4%); lumbar spine, 12 months (1.0%); femoral neck, 6 months (1.9%). Adjusted total body bone mineral content was higher in the calcium group at 6 months (2.0%), 12 months (2.5%), 18 months (4.6%), and 24 months (3.7%), respectively (all P < 0.001). Calcium supplementation was effective in increasing aBMD at regional sites over the first 12–18 months, but these gains were not maintained to 24 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic and environmental influences on variation in balance performance were measured in 93 monozygous and 83 dizygous female twin pairs aged 21–82 years (mean age, 50.5 years) in Melbourne, Australia, between 1999 and 2003. The authors administered clinical (Lord's Balance Test and Step Test) and laboratory tests of static and dynamic balance from the Chattecx Balance System with and without distractor tasks. The authors conducted factor analysis and estimated genetic and environmental variance components and heritability (defined as additive genetic variance as a proportion of all variance, after adjustment for age) using a multivariate normal model with the statistical package FISHER. Three factors were identified and adjusted for age. Heritability was 46% (standard error (SE), 9) for the "sensory balance tests" factor and 30% (SE, 9) for the "static and dynamic perturbations" factor. For both factors, the remaining variance was attributed to unique environmental effects. There was no evidence that genetic factors influenced variation in the "dynamic weight shift tests" factor, with environmental effects shared by twins accounting for 38% (SE, 7) of variance. Neither genetic nor environmental proportions of variance differed significantly between twin subgroups by age (≤50/>50 years). An age-related decline in performance measures was found across the whole sample. These results imply that balance impairments may have a heritable element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Childhood cardiovascular risk factors affect vascular function long before overt cardiovascular disease. Twin studies provide a unique opportunity to examine the influence of shared genetic and environmental influences on childhood cardiovascular function. We examined the relationship between birth parameters, markers of adiposity, insulin resistance, lipid profile and blood pressure and carotid-femoral pulse wave velocity (PWV), a validated non-invasive measure of arterial stiffness in a healthy cohort of school-aged twin children. PWV was performed on a population-based birth cohort of 147 twin pairs aged 7-11 years. Fasting blood samples, blood pressure and adiposity measures were collected concurrently. Mixed linear regression models were used to account for twin clustering, within- and between-twin pair associations. There were positive associations between both markers of higher adiposity, insulin resistance, elevated triglycerides and PWV, which remained significant after accounting for twin birth-set clustering. There was a positive association between both diastolic and mean arterial blood pressure and PWV in within-pair analysis in dizygotic, but not monozygotic twins, indicating genetic differences evident in dizygotic not monozygotic twins may affect these associations. Increased blood pressure, triglycerides and other metabolic markers are associated with increased PWV in school-aged twins. These results support both the genetic and environmental contribution to higher PWV, as a marker of arterial stiffness, and reiterate the importance of preventing metabolic syndrome from childhood.